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Abstract. We consider several lattice models of branched polymers in dilute solution in which 
the polymer molecule is modelled as a tree or animal In general the t h e r " i c  properties 
of the polymer are determined by monome-monomer and monomer-solvent interactions. We 
examine a hvo-variable model which incorporates both types of interactiDn and discuss its 
relationship to other models which have previously been investigated. In particular. we discuss 
lhe collapse transition in these models. 

1. Introduction 

Linear polymer molecules in dilute solution are expanded objects under good solvent 
conditions and can be conveniently modelled as self-avoiding walks on lattices. If the 
solvent quality is decreased the linear polymer can undergo collapse from a random coil 
to a ball or globule and this phenomenon has been investigated experimentally by light 
scattering (Slagowski et ~l 1976, Sun et al 1980) and by viscosity measurements (Sun et 
al 1990). A convenient model for this system is a self-avoiding walk with an energy term 
proportional to the number of first-neighbour contacts, i.e. the number of pairs of vertices 
of the walk which are one lattice space apart but not connected by an edge of the walk 
(Mazur and McCrackin 1968, Finsy et QZ 1975, Saleur 1986, Meirovitch and Lim 1989 and 
many other papers). 

One would expect a similar collapse phenomenon in randomly branched polymers in 
dilute solution (as the quality of the solvent is decreased) but this does not seem to have 
been studied experimentally. However, a number of models of branched polymers have 
been considered, and there is substantial numerical evidence for the existence of a collapse 
transition (Denida and Henmann 1983, Dickman and Shieve 1984,1986, Lam 1987,1988, 
Chang and Shapir 1988, Gaunt and Flesia 1990, Flesia and Gaunt 1992). All of these 
models are based on either lattice trees or lattice animals and the transition is associated 
with a change in a fugacity controlling either the number of contacts in the tree or animal, 
or the cyclomatic index of the animal. Madras et al (1988, 1990) have derived rigorous 
bounds on the behaviour of the free energy for several of these models. 

The behaviour of a branched polymer molecule is determined by both monomer- 
monomer (2-2) and solvent-monomer (1-2) interactions. Both terms can be incorporated 
into the model. In the contact model (see for instance Gaunt and Flesia (1990) and Madras et 
a1 (1990)) the (2-2) interactions are explicitly included but (1-2) interactions are ignored, so 
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that the energy term is an effective monomer-monomer interaction, reflecting the difference 
between (2-2) and (1-2) interactions. Similarly in the solvent model (see for instance Flesia 
et al (1992a) and Flesia (1993)) only (1-2) interactions are explicitly included. 

In section 2 we define a two-variable model incorporating both solvent-monomer and 
monomer-monomer terms, and prove some results about the general properties of the free 
energy, including a connection with percolation theory. A preliminary amount of some of 
this work has appeared in Flesia et a1 (1992b). and is related to the work of Coniglio (1983). 
In section 3 we discuss the relationship of this two-variable model to other models which 
have been previously studied in the literature. In section 4 we derive some bounds on the 
behaviour of the kee energy of the two-variable model and in section 5 we concentrate on 
the solvent model, presenting numerical estimates of the free energy and heat capacity, and 
comparing these to the properties derived in section 2 and the bounds of section 4. 

A related problem in which a collapse transition occurs is vesicles (Lipowsky 1991) 
subject to a pressure difference across their boundary. In two dimensions a vesicle is a 
self-avoiding polygon and its enclosed area, while a three dmensional vesicle is a closed 
surface homeomorphic to a sphere, and its enclosed volume. These problems have been 
studied by Fisher et al (1991), Banavar et a1 (1991), Stella et al (1992). Vandenande 
(1993) and Whittington (1993). One can define a grand canonical ensemble by associating 
a fugacity, x, with the size of the boundary and a fugacity, y, with the size of the enclosed 
volume. The grand partition function converges in a region of the xy-plane bounded by 
the curve y = y&) and this boundary has a point of non-analyticity corresponding to a 
collapse transition in the vesicle. Stella et a1 and Vanderzaode have suggested that this 
transition is closely related to the collapse transition in lattice animals. In particular, they 
noticed that vesicles can be mapped by a duality transformation into a particular subset 
of strongly emheddable lattice animals. However, this subset is exponentially small in 
the set of all strongly embeddable animals. In addition. Flesia et al (1993) have shown 
that the thermodynamics of the vesicle model and the corresponding model for all strongly 
embeddable animals are qualitatively different. In section 6 we present some additional 
results about the relationship between the vesicle model and the solvent model for strongly 
embeddable animals. 

2. A generalized model 

In this section we discuss a generalized model which incorporates monomer-solvent 
interaction terms as well as monomer-monomer terms. We consider animals weakly 
embeddable in the d-dimensional hypercubic lattice and restrict ourselves to site counting. 
Consider an animal with n vertices, cyclomatic index c, and e edges. These three quantities 
are related through Euler’s relation 

c = e  - n  + 1. (2.1) 

If a pair of vertices in the animal are near-neighbours on the lattice and are not incident on 
a common edge, we call this pair of vertices a contact. Let the number of contacts in the 
animal be k. If an edge of the lattice is not an edge of the animal but is incident on exactly 
one vertex in the animal we call this edge a solvent contact and write s for the number of 
solvent contacts associated with the animal. Clearly s + k is the usual edge perimeter of 
the animal. Counting edges gives the relation 

(2.2) 2dn = 2e + 2k +s 
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and, using (2.1) 
s + 2k +2c = 2(d - 1)n + 2. (2.3) 

Let a&, k) be the number (per lattice site) of animals with n vertices, k contacts and s 
solvent contacts. We define a partition function 

(2.4) Z.(Bi. &) = EU,(S, k)&+&'. 
s,k 

By a concatenation argument we obtain the inequality 

Since U:'" is bounded above wit t ington and Soteros 1990) then ZR(,91. &)'I" is bounded 
above for p1 and & less than infinity. This together with equation (2.5) implies the existence 
of the limit 

(2.6) n-m lim n-'logZdBI.Bz) = G(BI,&). 

Using Cauchy's inequalit) 

so that Z.(p'1. &)I/" is log-convex. Since the limit, when it exists, of a sequence of convex 
functions is itself convex it follows from equation (2.6) that G@I, &) is a convex function 
of PI and &. Since G(B1, &) is bounded above (except for p1 01 & = CO), convexity 
implies continuity for 

Since equation (2.3) gives a relationship between c, k and s we can derive a relationship 
between any pair of the three two-variable partition functions. For instance, if we write 
aA(s, c) for the number of lattice animals with n vertices, s solvent contacts and cyclomatic 
index c, then we can define 

ZL(P,, &) = U;(& C)eB1S+&C (2.8) 

& c ca. 

SIC 

The corresponding relationship between the free energies is therefore 

GWI, &) = -(d - 1)Bz + G'(Bi - i&. -&). (2.10) 

As discussed in Flesia et a1 (1992b). there is an interesting connection with percolation 
theory. Consider the edge percolation problem with edge occupation probability p. Let 
P,(p) be the probability that the cluster containing the origin consists of n vertices, at edge 
occupation probability p. Then 

(2.1 1) 
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where est = (1 - p ) / #  and e& = (1 - p ) / p .  It is known that limn+m n-' log P&) < 0 
for p < pc and lim,,,,n-'logP,(p) = 0 for p > pc  (see for instance Grimmen 
1989). Restating these results in terms of G we have, for @I = p~ - log(1 + e&) 
and & > log[(l - ~ c ) / ~ c l  

G(Bi,&) <dlog( l  +e&). (2.12) 

(2.13) 

This implies that the point (p:, Si) = (log[(l - p c ) / a ,  log[(l - p e ) / p c ] )  is a singular 
point of the function G at least when approached along the curve = 8 2  - 4 log(l +e&). 
For the square lattice ,9f = - log f i  = -0.34657. . . and 64 = 0. 

Making the usual conjecture (Grimmett 1989, page 150) that 

P&) - n-'-l/6 (2.14) 

as n -+ M, we see that 

z"(p;, p;)  N n-2-1/d P C  -dn (2.15) 

and 

G ( B ; , B ~ ) = - ~ ~ z P ~ .  (2.16) 

In particular, for the square lattice 

Zn(- log&, 0) - n-"/9I 4" (2.17) 

and G(-log&,O) =log4. 
Most of the results discussed in this section are concerned with the limiting free energy 

G(pl,p2). This quantity has the disadvantage from a numerical point of view that any 
singular behaviour is difficult to detect. It is convenient to define a heat capacity 

C"(BI,&) =n-'[((Bls +&kY)" - (Bls+&k):l (2.18) 

which should show peaks for small n corresponding to singular behaviour in the infinite n 
limit. We have calculated C,@l, &) for small values of n for the square lattice using exact 
enumeration data given in Madras et a1 (1990) with additional data due to Martin and Sykes 
(1992). In figure 1 we show the dependence on p1 and & for n = 21 for the square lattice. 
This figure shows three ridges meeting at a point close to (-log A. 0), consistent with the 
suggestion of Flesia et a1 (1992b) that the model has three phase boundaries meeting at a 
hiple point. 

0 OL 
0 03 

0.02 

a01 
0 

c. 

FI!gure 1. The heat capacity of the 
two-variable model for n = 21. 
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3. Connections with one-variable models 

5835 

By choosing particular values for the parameters p, and 8 2  we can recover the single variable 
models such as those considered in Madras et a1 (1990), Gaunt and Flesia (1990) and Flesia 
(1993). For instance Z.(O, p)  is the partition function of the contact model and Z.(p, 0) 
is the partition function of the solvent model in which we have a fugacity conjugate to the 
solvent perimeter. We discuss this model in section 5. 

The connection between the two-variable model and other one variable models is less 
obvious than for the contact and solvent models. To obtain the cycle model we note that 

(3.1) 2c = 2(d - 1)n + 2 - (s + 2k).  

If we choose = 281 = -p  then 

pis + pzk = -[(d - 1)n + 11p + C@ (3.2) 

z n ( - 8 / 2 ,  - p )  = e-[(d-l)"+"flz,"(p) (3.3) 

so that 

where Z;(p) is the partition function of the cycle model. This implies that the cycle model 
corresponds to the line 8 2  = Zp1 in the (pi ,  pz) plane. 

We can obtain the p-model in which the fugacity is associated with the number of pairs 
of nearest-neighbour vertices in the animal, whether or not they are connected by an edge. 
We write p = e + k  so that 

p = d n - s / 2  (3.4) 
and we obtain the p-model by setting p1 = - 8 / 2  and pz = 0, i.e. by mapping it into the 
solvent model. Hence the properties of the p e l  are completely determined by the solvent 
model. The same argument applies for the p-el for strongly embeddable animals which has 
been studied by Demda and Herrmann (1983). In fact for stmngly embeddable animals the 
p-el, the cycle model and solvent model can be mapped one into another. 

We can also define an edge perimeter model in which the fugacity is associated with the 
edge perimeter which appears in percolation problems, i.e. s + k. The appropriate partition 
function is 

z,(p, p )  = Ca.(s. k)e('+')P (3.5) 
k.s 

corresponding to the line 
An advantage of the two-variable model is that many one variable models appear as 

special cases and they can be studied in a unified way by studying the properties of the 
two-variable model. 

Some other one variable lattice animal models, such as the solvent model for weakly 
embeddable trees and the solvent model for strongly embeddable animals, are not special 
cases of the two-variable model but are relevant to the behaviour of the two-variable model 
as b goes to plus or minus infinity. In fact, in the next section we derive bounds for the 
limiting free energy of the two-variable model in terms of the limiting free energies of these 
one variable models. 

= PI. 

4. Bounds on ihe free energy 

There are numerous ways to obtain bounds on G(B1,pz). One can for example, 
obtain bounds from combinatorial inequalities involving the an(#, k), from maximizing or 
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minimizing the eBIzt&.I factor in the summand of Z.@l,pz). from the fact that G(B1. &) 
is a convex, non-decreasing function of and & or by exploiting the connections between 
lattice animals and percolation clusters. 

In this section we discuss some examples of upper and lower bounds on G(B1, Bz) .  
We begin by discussing some bounds which can be obtained from a combinatorial 

inequality involving U&, k). We can derive an inequality for an@, k) by an extension of 
an argument of Madras et ol (1988, 1990). giving 

This inequality allows us to derive two sets of upper and lower bounds for C@l, &). 
One set is in terms of the free energy of the solvent model for strongly embeddable 
animals (k = 0) and the other is in terms of the free energy of the solvent model for 
trees (k = (d - 1)n - s/2 + 1). We expect that the first set of bounds will be important in 
the @z < < 0 region where the average value of k will be near 0. 

To obtain the first set of hounds we define the solvent partition function for strongly 
embeddable animals, A,@), to be 

AdB) = z a n ( f , O ) @  (4.2) 

k(g) = l i  n-’ logA,(B). 

and define the corresponding limiting free energy, k@), to be 

(4.3) n-tm 

Setting k equal to zero in equation (4.1), multiplying throughout by epIEt&j and summing 
over s and j gives 

(1 + e&)(d-l)ntlAn(B) < Zn(B1, Bz) < (1 + &d*A.(B) 

B =PI - ; log(1 +e&). 

(4.4) 
where 

(4.5) 
Taking the appropriate limit gives the first set of upper and lower bounds, 

(d- l)log(l+e*)+fi(B) < G(j31,&) <d log( l+e&)+k(p ) .  (4.6) 
In a similar way we can derive bounds on G(p1, &) in terms of the free energy of the 

solvent model for trees. If the animal is a tree the number of cycles is identically zero and 
hence the number of contacts is (d - 1)n - s / 2  + 1 so that the solvent partition function 
for trees is given by 

(4.7) Tn@) = ca. (s .  (d - 1)n - s /2  + l)@ 
P 

and the corresponding limiting free energy is 

I@) = l i i  n-’ log Tn(@). 
n-bm (4.8) 
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where 

p = p, - f log(] +e&). (4.10) 

Taking the appropriate limit gives the second set of upper and lower bounds 

(d- I ) log(l+&)+(d-  I)log(d- l)-dLogd+7'(B) <G(Bi,Bz) 

< (d - I)lOg(l+ 8) +I@). 
(4.11) 

Equation (4.1) can also be used to obtain a relationship between 7 ( p )  and &?). Setting 
k = 0 and j = (d- I)n+ 1 - s/2 in equation (4.1) and performing the appropriate operations 
gives 

(4.12) 
Using equation (4.12) to compare equations (4.6) and (4.11) results in the combined bounds 

(d - 1) lOg(1 +e&) + &B) < G(BI, &) 

P(P) < 'TU) < dlogd - (d - I)lOg(d - 1) + h@). 

min{d log(l+e&)+ &B), (d - 1) log(l+&+7(B)} Bz<log(&-l) 

(d- 1)10g(l+e&)+7(6) & m ( & - 1 ) .  
(4.13) 

Equation (4.13) can be used to obtain further bounds on G(@I, &) from known bounds 

The connection with percolation can also be exploited to obtain bounds on G. Since 
and & we can extend (2.12) to show that for 

G'(B1.h) <dlog(l +&. (4.14) 

< &-f log(l+eh) 

on P(g) and I(@). 

GV1, &) is a non-decreasing function in 
any fixed BZ =. W ( 1  - P J / P J  and any BI < & - f log(1 +eh) 

In addition, using (2.13). for any fixed c log[(l -pc ) /pc ]  and any 

G(Bi,&)<dlog(l+e&) (4.15) 

while for any BI 2 & - f log(1 +eh)  

G(BI, Bz) 2 dlog(l+ &. (4.16) 

If we solve for p in terms of instead of BZ we have 

e2Pl e P i J P G Z  
p = l + - -  

2 
and hence the curve corresponding to percolation in the (PI, &) plane is 

e2Pl + 4 
Pz = PI + log( $ + -> 2 

(4.17) 

(4.18) 

and we can obtain bounds for fixed /31 similar to those already derived for fixed &. For 
example we get for fixed PI c log[(l - po)/&Q 

(4.19) 
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provided that 

p2>p,+log(;+-) 2 '  

An important lower bound can be obtained using the fact that for any choice of s and k, 
ads. k)eBisth' < zn(B1,pz). (4.21) 

If we choose (8 ,  k) E ((2(d - l)n + 2, O), (s&, (d - l)n + 1 - sdn/2), (sdn,O)] then we 
obtain the following lower bound, 

WI. Bz) > maxIlog AO + 2(d -  MI. c / z  + (d - W. 01 (4.22) 
where A0 is the growth constant for seongly embeddable trees and C is Catalan's constant. 

In the next section we investigate numerically the free energy and phase behaviour of 
the solvent models for weakly and sIxongly embeddable animals and make comparisons to 
the bounds derived above. 

~ C / X  m 1.166. I , .  

5. Solvent models 

In section 3 we discussed how the contact model and the solvent model for weakly 
embeddable animals were special cases of the two-variable model. In Madras er al (1990), 
the contact model was investigated and numerical estimates and bounds for the free energy 
were given. The results presented there correspond to the case p1 = 0 in the two-variable 
model. Corresponding results for the solvent model have not been presented. Since the 
collapse transition can be driven by changing the solvent quality and, since the results in 
section 2 of this paper predict the location of the phase transition for the solvent model, 
it is an important model to investigate numerically. In this section we present numerical 
estimates of the free energy and heat capacity for this model and compare the estimates to 
the properties and bounds derived in sections 2 and 4, respectively. In addition, we look at 
numerical estimates for the solvent model for strongly embeddable lattice animals. 

Let q.(s) be the number of lattice animals with n vertices and s solvent contacts, so 
that q,&) = Ex a.($, k). We define the corresponding partition function 

Q.V) = C q n o ) e s s  (5.1) 

F(j3) = n+m lim n-' log Q,@) (5.21 

and the existence of the limit 

follows from equation (2.6). Since F(p) = G(B, 0). the results of section 2 imply that 
F(p) is monotonic, convex and continuous, for j3 c bo. 

Since pc  = 0.5 for d = 2 and pe  * 0.247 (Essam 1972) ford = 3, the bounds derived 
in section 4 imply for p c - log Jz 

4c  FV) > - 
7r 

(5.3) 

while for -1ogfi < p < o 

where A is the growth constant for weakly embeddable animals. For p 
F(p) > max(dlog2, logA + 2(d - 1)p) 

3 ( p )  > max(log AO + 2(d - 1)p, logA1. 

(5.4) 

(5.5) 

0 



Stm'stics of collapsing lanice animals 5839 

The upper bound for ,9 < -log 1/2 is 

F(p) < d log 2. (5.6) 

If A\.o is the growth constant for weakly embeddable trees then for [log ho + (d - 1) log 2 - 

(5.7) 

logh]/2(d - 1) > p > -lo& 

F(8) < max[logh, logh + 2(d - 1),91 

and for [log ho + (d - 1) log2 - lOgh]/Z(d - 1) < ,9 

F(j3) < max(logl0 + (d - 1) log2, logho + 2(d - 1),9}. (5.8) 

We have estimated the limiting free energy from exact enumeration data given in Madras 
et ~l (1990) with additional data due to Martin and Syks (1992). The data include n values 
up to n = 21 for the square lattice and n = 19 for the simple cubic lattice. ?he limiting 
free energy estimates for weakly embeddable animals are shown in figure 2 for the square 
lattice and in figure 3 for the simple cubic lattice, together with the bounds summarized in 
equations (5.3) lo (5.8). From these figures it is clear that the series analysis results are well 
converged in the expanded region and that the lower bound log Ac,+2(d - 1)p is approached 
rapidly as j3 increases. In the compact regime the series results become progressively worse 
as p becomes more negative and the estimates are unreliable for ,9 < - 1 when d = 2 and 
for j3 < -0.5 when d = 3. This is undoubtedly connemd with the highly compact nature 
of the dominating clusters in the compact regime but, since the estimates are below the 
lower bound, they indicate that the bound (5.3) will be good for large negative ,9. 

From the percolation argument given in section 2 we h o w  that F(- log A) = d log 2 
and we have confumed that the series data agree with this result For the square lattice, 
we have also examined the way in which the limit is approached at this value of ,9 by 
estimating the exponent 0' in 

(5.9) z"(- log&, 0) - n-" 4 

I 
-1 0 -0,5 0 0 , I  1.0 r,5 2,0 

D 

Figore X The 6 dependence of the limiting free energy for the solvent d e l  for animals 
weakly embeddable in the square lanice. 
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I 
-7 0 - 0 5  0 0 5  $ 0  1.5 2 0  

P 

F- 3. The ,6 dependence of the limiting free energy for h e  solvent model for animals 
weakly embeddable in the simple cubic IattiOe. 

by standard ratio methods. In figure 4 we show the n-dependence of the ratio estimates 

(5.10) 

We estimate 0' = 2.06 & 0.01 in excellent agreement with equation (2.17). 
Also for the square lattice version of this model we have argued that the free energy 

in singdar at ,3 = - l o g d  (Flesia et al 1992b) and that larger values of ,3 correspond to 
an expanr;~~ regime. (~n fact we h o w  that the point (- log Ji, 0) is a singular point of 
G(p1, &) when approached along the curve 

(5.11) 

I/" 

Figure 4. Ratio estimates of ule expowe01 9' for the square lattice. 



Statistics of collapsing lanice animals 5841 

but we have not proved that it is a singular point when approached along the p1 axis.) To 
check this we have calculated the values of the heat capacities 

s (5.12) 

as a function of p and n. The eak positions change as n increases, but approach a limiting 
value consistent with - log / 2 We fitted successive triples of points, pm(n), to the form 
pc + - Bn-' for n = 5 , .  . . ,21. The first correction term is the finite size scaling 
correction involving the crossover exponent Q which we take to have the value 0.6, while 
the second correction term is the first order analytic correction. (Although the value of Q is 
not known accurately for this model, changes in the second decimal place will have only a 
small effect on the fitting reported here.) For example, fitting the last three n values to this 
form, we obtain that pc m -0.3475, A 3.6544, B ~3 5.4657 and, using the sequence of 
values of pc obtained in this way, we estimate pc = -0.35 & 0.05. This is strong evidence 
that the transition occurs exactly at p = - log A = -0.34657.. . . 

We can also look at the corresponding model for strongly embeddable animals. The 
limiting free energy for this model, P(@), was defined in equation (4.3). Equation (4.6) is 
an inequality relating G(&, p2) to f(B) and hence improved information about k(p) will 
lead to improved information about G ( ~ I !  pz). 

New bounds for k(B) were obtained in Flesia et al (1993) based on site percolation 
arguments. These lead to the following upper bounds for P(p). For p < 0 

(5.13) Pu) < min{- log(1 - g), log A]  

where A is the growth constant for strongly embeddable animals, and for p > 0 

t ( p )  < log A + 2(d - 1)p. (5.14) 

Given bc, the critical probability for site percolation, we obtain the following lower bounds, 
for p < & log(1 - 

P ( p )  > max{- Iog(1 -e'@), log A + 2(d - 1)pl (5.15) 

for 0 > p > & log(1- B E )  
P(p) > log A + 2(d - 1)p (5.16) 

and for p > 0 

8 ( p )  > max{logA, log& f 2(d - 1)p]. (5.17) 

As in the weakly embeddable version we estimate the limiting free energy from exact 
enumeration data. The estimates are shown in figure 5 f6r the square lattice and figure 6 
for the simple cubic lattice, together with the bounds summarized above. It is again clear 
that the series analysis results are well converged in the expanded region and that the lower 
bound log A0 + 2(d - 1)p is approached rapidly as p increases. In the compact regime the 
series results become progressively worse as p becomes more negative and the estimates 
are unreliable for p < -1 when d = 2 and for p < -0.5 when d = 3. For the square 
lattice, the model can be mapped into the model studied (using transfer matrix methods) 
by Derrida and Hemnann (1983) and their work predicts a transition at m -0.935. 
The free energy estimates imply that 8(-0.935) > 0 and in particular we estimate that 
8(-0.94) = 0.035 f 0.02. This is consistent with the lower bound (5.13) and is further 
evidence that the critical behaviour of this lattice animal model is different from that of the 
vesicle model (see Flesia et al (1993)). 



Flgure 5. The @ dependence of the limiting free energy for the solvent model for animals 
strongly embeddable in the square lattice. 

P 

Figure 6. The @ dependence of the limiting free energy for ule solvent d e l  for animals 
smngly embeddable in the simple cubic lattice. 

The new bounds (5.15) and (5.13) provide some useful information regarding the two- 
variable model limiting free energy G(pi, pz). In particular, equations (5.15) and (5.13) 
imply that 

(5.18) 

while %@) > 0 for all B > -CO. From equation (4.6) and the continuity of fi 
G(Bi,Bz) = &Pi). (5.19) 

This combined with the fact that f i @ l )  > 0 for finite ,SI, rules out the possibility (left 

&+-CO 
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open by equation (4.16)) that G@1, &) = dlog(1 + e h )  for & - f log(1 + eh). 
However, we still have not rigorously ruled out the possibility (left open in equation (4.15)) 
that G@l, 02) = dlog(1 + eh) for Bi 6 BZ - log(1 +e&) and & < log[(l - pc) /pc l .  
However, the free energy estimates shown in figures 2 and 3 provide strong evidence that 
this is not possible. 

6. The vesicle model 

Vanderzande (1993) and Stella et ul (1992) have suggested that the transition in animals 
might be connected with the collapse in vesicles. Their proposal rests on the mapping 
between a lattice and its dual, in which each vertex is replaced by its dual d-cell. For 
the square lattice every vertex is replaced by its dual two-cell, which in this case is an 
elementary square (or plaquette) in the (self-dual) square lattice. An animal with n vertices 
maps into an object which is composed of n plaquettes and therefore has area n. If this new 
object is topologically a disc, then the animal has been mapped into a vesicle (a polygon 
and the area which it encloses) with area n. Since each solvent contact in the original 
animal crosses an edge in the dual lattice which is on the perimeter of the vesicle, the 
vesicle has perimeter s. Of course, not every animal is dual to a disc. In particular, weakly 
embeddable animals with contacts cannot be dual to a disc, so we are reshicted to strongly 
embeddable animals. Furthermore, a strongly embeddable animal which contains 'holes', 
or other structures leading to topological singularities in the dual surface, is not dual to a 
disc. These are severe restrictions and imply that animals dual to a disc are exponentially 
rare in the set of strongly embeddable animals. 

The behaviour of vesicles is now quite well understood (Fisher et a1 1991, Banavar 
et nl 1991). In two dimensions, if U&) is the number of vesicles per Iattice site with s 
perimeter edges, enclosing area n, we can write the generating function 

where we note that e@ corresponds to the fugacity x in the notation of Fisher et a1 (1991). 
It follows from their arguments that 

is monotonic non-decreasing, continuous, log-convex and almost everywhere differentiable. 
Moreover, there exists a Bo e 0 such that A(B) is zero for p e Bo and positive for B z Bo. 
Translating into a grand-canonical ensemble, to make the connection with the work of 
Vanderzande more transparent, we define 

and use (6.2) to obtain 

(6.3) 

(6.4) 

which converges if 

y < ,-A@). (6.5) 

This argument gives the form of the phase diagram shown in figure 2 of Vanderzande (1993) 
where our e@ corresponds to Vanderzande's K and our y corresponds to Vandmde's p .  
The 'phase boundary' in that figure is just the boundary of convergence of 8, and this 
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boundary contains a singular point at /3 = -K. y = I ,  where (in two dimensions) K is the 
connective constant of self-avoiding polygons on the square lattice. 

Flesia et nl (1993) have shown that for the solvent model for strongly embeddable 
animals the situation is somewhat different. Writing the grand-canonical partition function 
as 

8 converges if 

The 'phase boundary' has a singular point corresponding to the collapse transition, occuring 
at /3 = #Jc % -0.935 and y = yc < 1. Since F is never zero (see equation (5.15)), there 
is no vertical line in the phase diagram, corresponding to figure 2 of Vanderzande. for this 
model, and the 'phase boundary' approaches the y-axis smoothly at y = I, in contrast to the 
vertical segment in the vesicle model. Flesia et a[ (1993) argue that this difference is due 
to the additional solvent perimeter associated with 'holes' in the object dual to the animal, 
and we now show this more explicitly. In particular, we show that for the solvent model 
for strongly embeddable animals the average number of solvent contacts, (s) - n, provided 
p > -m. In contrast, in the solvent model for strongly embeddable animals dual to a disc 
(equivalent to the vesicle model) the average number of solvent contacts (perimeter edges 
for vesicles), (s), is o(n) for -CO < /3 < xo. For the solvent model 

and when we take the limit n 4 CO we can interchange the order of the limit and derivative 
(almost everywhere) since the A&?) are convex, increasing functions of #J. Hence 

Since P(/3) is strictly increasing then equation (6.9) implies that (s) - n. A similar argument 
for the vesicle model shows that 

(6.10) 

and this equation, together with the fact that A'(B) = 0 for /3 < xo, implies that (s) = o(n) 
for /3 < x,. Therefore there is a fundamental difference in the thermodynamics of these 
two models. In the notation of Brak et al (1993). the vesicle model is asymmetric while 
the solvent model for strongly embeddable animals is symmetric. This means that the 
heat capacity exponent 01 cannot be defined for the vesicle model when the transition is 
approached from the small /3 direction. 

Perhaps this is even clearer if we examine the situation in the constants ensemble. For 
the vesicle problem we know that the limiting free energy in this ensemble at y = 1 is 
equal to K. For strongly embeddable animals this limiting free energy is infinite at y = 1, 
as can be seen from the above arguments (i.e. by switching ensembles) or by the following. 
Equation (6.6) can be rewritten as 

(6.11) 

We next obtain a lower bound on H,(y). To obtain a lower bound, consider the set of 
strongly embeddable animals formed in the following way. Start with a building block 
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which is a 3 x 3 square of 9 vertices and build up a bigger square animal from 1 rows of 1 
intersecting building blocks. The bigger animal is made up of l2  building blocks ( (21 + 1)2 
vertices, 81 + 4 solvent contacts) and in the centre of each block is a vertex. Remove any l 
of the centre vertices. This yields an animal with n = 41' + 31 + 1 vertices and s = lX + 4 
solvent contacts. There are (7) distinct animals of this kind. Hence 

(6.12) 

An easy calculation then shows that n-'logH,,(l) goes to infinity at least as rapidly as 
log n. Therefore the limiting free energy in this ensemble at y = 1 is infinite. 

We summarize the results of this section in figure 7 where we compare the behaviour 
of the vesicle problem and the strongly embeddable animal problem in the grand canonical 
ensemble. 

4 11.e-9 

Y 

101 

i I bl l Y  

Figure 7. Sketch of the boundaries of convergence in the g m d  canonical ensemble for (0)  the 
vesicle model and (b) the solvent model for strongly embeddable animals. 

7. Discussion 

We have examined the properties of a two-variable model for branched polymers in dilute 
solution. In particular we have explored the general features of the free energy, derived 
bounds on its behaviour, and discussed connections between this model and several one 
variable models which have appeared in the literature. In addition we have derived 
bounds on the free energy for two solvent models and estimated the limiting free energies 
numerically using exact enumeration data. Finally we have discussed a vesicle model which 
was introduced by Vanderzande (1993) and pointed out significant differences between the 
behaviour of this model and one of the solvent models analysed in section 5. 

We have focussed on the behaviour of the free energy of these models but this gives 
rather little information about phase transitions. By a connection to percolation theory we 
showed that the free energy was singular at at least one point in the two-variable model and 
we have argued that this allows us to predict the exact location of the collapse transition in 
a solvent model. Further investigation at or near the phase transition, using Monte Carlo 
methods, would give useful additional information. 
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